• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quantitative Structure-Activity Relationship Modeling to Predict Drug-Drug Interactions Between Acetaminophen and Ingredients in Energy Drinks

    Thumbnail
    View/Open
    Somogyvari_Emese_E_201408_MSc.pdf (720.9Kb)
    Date
    2014-08-26
    Author
    Somogyvari, Emese
    Metadata
    Show full item record
    Abstract
    The evaluation of drug-drug interactions (DDI) is a crucial step in pharmaceutical drug discovery and design. Unfortunately, if adverse effects are to occur between the co-administration of two or more drugs, they are often difficult to test for. Traditional methods rely on in vitro studies as a basis for further in vivo assessment which can be a slow and costly process that may not detect all interactions. Here is presented a quantitative structure-activity relationship (QSAR) modeling approach that may be used to screen drugs early in development and bring new, beneficial drugs to market more quickly and at a lesser cost. A data set of 6532 drugs was obtained from DrugBank for which 292 QSAR descriptors were calculated. The multi-label support vector machines (SVM) method was used for classification and the K-means method was used to cluster the data. The model was validated in vitro by exposing Hepa1-6 cells to select compounds found in energy drinks and assessing cell death. Model accuracy was found to be 99%, predicting 50% of known interactions despite being biased to predicting non-interacting drug pairs. Cluster analysis revealed interesting information, although current progress shows that more data is needed to better analyse results, and tools that bring various drug information together would be beneficial. Non-transfected Hepa1-6 cells exposed to acetaminophen, pyridoxine, creatine, L-carnitine, taurine and caffeine did not reveal any significant drug-drug interactions, nor were they predicted by the model.
    URI for this record
    http://hdl.handle.net/1974/12381
    Collections
    • Queen's Graduate Theses and Dissertations
    • School of Computing Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV