• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parameter estimation in nonlinear continuous-time dynamic models with modelling errors and process disturbances

    Thumbnail
    View/Open
    Varziri_M_Saeed_200806_PhD.pdf (1.511Mb)
    Date
    2008-06-25
    Author
    Varziri, M. Saeed
    Metadata
    Show full item record
    Abstract
    Model-based control and process optimization technologies are becoming more commonly used by chemical engineers. These algorithms rely on fundamental or empirical models that are frequently described by systems of differential equations with unknown parameters. It is, therefore, very important for modellers of chemical engineering processes to have access to reliable and efficient tools for parameter estimation in dynamic models. The purpose of this thesis is to develop an efficient and easy-to-use parameter estimation algorithm that can address difficulties that frequently arise when estimating parameters in nonlinear continuous-time dynamic models of industrial processes.

    The proposed algorithm has desirable numerical stability properties that stem from using piece-wise polynomial discretization schemes to transform the model differential equations into a set of algebraic equations. Consequently, parameters can be estimated by solving a nonlinear programming problem without requiring repeated numerical integration of the differential equations.

    Possible modelling discrepancies and process disturbances are accounted for in the proposed algorithm, and estimates of the process disturbance intensities can be obtained along with estimates of model parameters and states. Theoretical approximate confidence interval expressions for the parameters are developed.

    Through a practical two-phase nylon reactor example, as well as several simulation studies using stirred tank reactors, it is shown that the proposed parameter estimation algorithm can address difficulties such as: different types of measured responses with different levels of measurement noise, measurements taken at irregularly-spaced sampling times, unknown initial conditions for some state variables, unmeasured state variables, and unknown disturbances that enter the process and influence its future behaviour.
    URI for this record
    http://hdl.handle.net/1974/1248
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Chemical Engineering Graduate Theses
    • Queen's Graduate Theses and Dissertations
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV