• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Slip Heating in Polymer Processing

    Thumbnail
    View/Open
    Gilbert_Peter_H_201412_MASC.pdf (9.731Mb)
    Date
    2014-12-04
    Author
    Gilbert, Peter
    Metadata
    Show full item record
    Abstract
    When one body slips on another, heat is generated at the slipping interface. We call this phenomenon slip heating and apply slip heating theory to cohesive and adhesive slip in extrusion dies. Adhesive slip, which is linked to melt fracture, is a breakdown of the no slip boundary condition at the die wall, where the fluid moves with respect to the wall. Die drool, the accumulation of plastic on the open die face, has been attributed to cohesive melt failure, which results in the formation of a bulk layer that slips on a drool layer. The corresponding isothermal analysis of cohesive slip led to an analytical solution for the drool rate [Schmalzer and Giacomin, J. Pol. Eng., 33, 1 (2013)]. We account for slip heating during adhesive and cohesive slip and develop analytical solutions for temperature rise with and without viscous dissipation. We focus on slit flow, used in film casting, sheet extrusion and curtain coating, and when curvature can be neglected, slit flow is easily extended to pipe extrusion and film blowing. In slit flow, the heat flux from the slipping interface is the product of the shear stress and the slip speed. We present the solutions for the temperature rise in pressure-driven and simple shearing flows, each subject to constant heat generation at the slipping interface. We find expressions for drool rate by modeling viscosity as an Arrhenius function of temperature, and we show how to correct wall slip data for the slip heating temperature rise. We conclude with worked examples showing the importance of slip heating in die drool and wall slip, and we find that slip heating suppresses drool. We also arrive at a necessary dimensionless condition for the accurate use of our results: Pé<<1.
    URI for this record
    http://hdl.handle.net/1974/12642
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Chemical Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV