• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Effect of Insulin Sensitivity on Corticolimbic Responses to Metabolic and Visual Food Cues

    Thumbnail
    View/Open
    Alsaadi_Hanin_M_201505_MSC.pdf (1.564Mb)
    Date
    2015-06-02
    Author
    Alsaadi, Hanin
    Metadata
    Show full item record
    Abstract
    Insulin is one of several molecules that signals the energy balance state to the brain. This study examined the effect of insulin sensitivity on the responsiveness of appetite regulatory brain regions to visual food cues. Nineteen participants diagnosed with polycystic ovary syndrome (PCOS) were studied. Subjects were divided into insulin-sensitive (n=8) and insulin-resistant (n=11) groups based on the homeostatic model assessment of insulin resistance (HOMA2-IR). Subjects underwent functional magnetic resonance imaging (fMRI) while viewing food pictures following water or dextrose consumption. The corticolimbic Blood Oxygen Level Dependent (BOLD) responses to high-calorie (HC) or low-calorie (LC) food pictures were compared within and between groups. BOLD responses to food pictures were reduced during a glucose challenge in numerous corticolimbic brain regions of insulin-sensitive subjects, but not in insulin-resistant subjects. In addition, a positive interaction was detected between insulin sensitivity and condition. Furthermore, the degree of insulin resistance positively correlated with the corticolimbic BOLD response in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cingulate and ventral tegmental area (VTA) in response to HC pictures and in the dorsolateral prefrontal cortex (DLPFC), mPFC, anterior cingulate, and insula in response to LC pictures following a glucose challenge. The activity in the OFC, midbrain, hippocampus, and amygdala was positively correlated with HOMA2-IR in response to HC>LC pictures following a glucose challenge. We conclude that the normal inhibition of corticolimbic brain responses to food pictures during a glucose challenge is compromised in insulin-resistant subjects. The increase in brain responsiveness to food pictures during postprandial hyperinsulinemia may lead to greater non-homeostatic eating and perpetuate obesity in insulin-resistant subjects. Understanding how insulin sensitivity affects appetite-regulating brain regions responses to food pictures is necessary for the development of prevention strategies and effective therapeutic targets for the treatment of obesity, particularly obesity related to insulin resistance in PCOS.
    URI for this record
    http://hdl.handle.net/1974/13103
    Collections
    • Queen's Graduate Theses and Dissertations
    • Physiology Graduate Theses (July 2007 - Sept 2016)
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV