• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rateless Coding for Single-Source Networks with Common Information

    Thumbnail
    View/Open
    Modiri_Arghavan_201504_MASC.pdf (449.4Kb)
    Date
    2015-06-03
    Author
    Modiri, Arghavan
    Metadata
    Show full item record
    Abstract
    In this thesis, we consider the communication problem of a single source simultaneously transmitting to multiple receivers whose sets of requested messages overlap. For decades, one of the challenges in this broadcast setting has been decreasing the number of transmissions from the source to the terminals without increasing the system complexity. The multicast and broadcast problems with ‘common’ information have been mostly studied ‘existentially’: information-theoretical bounds on rates and capacities have been discussed in a number of previous works. In this work, we take the contrasted ‘constructive’ viewpoint and attempt to design practical transmission protocols with low encoding and decoding complexities. Our approach is based on rateless fountain coding equipped with efficient belief propagation (BP) decoders. While previous network coding solutions require high-complexity Gaussian elimination decoding for optimality, fountain codes allow for much better performance-complexity trade-offs with BP decoders due to their sparse decoding Tanner graphs. We provide insights and solutions for the 2-terminal setting as an example that show the extraordinary power and flexibility of fountain codes to address the conflicting challenges in the design of efficient transmission protocols. Our ideas can be extended to larger number of receivers and though we have focused on Luby-Transform (LT) codes, other fountain coding distributions can be equally useful. The proposed coding methods in this thesis can be applied to many practical systems such as wireless sensor networks (WSN) that have limited power, memory, and processing capabilities.
    URI for this record
    http://hdl.handle.net/1974/13114
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Electrical and Computer Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV