• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of TULP3 as a negative regulator of Hedgehog signalling in the mouse

    Thumbnail
    View/Open
    Cameron_Donald_A_201006_PhD.pdf (2.798Mb)
    Date
    2015-07-29
    Author
    Cameron, Donald
    Metadata
    Show full item record
    Abstract
    The Hedgehog (Hh) family of secreted signalling factors play diverse roles in animal development. In mammals, the Hh ortholog Sonic hedgehog (Shh) is critical for the proper formation of the limbs, central nervous system, and axial skeleton, amoung other tissues. Mutations affecting the function of this pathway during development have severe consequences to the developing embryo and can cause birth defects in humans. Inappropriate activation of the pathway in adult tissues has also been implicated in several human cancers. In recent years several unexpected regulatory factors of the pathway during embryogenesis and in the adult have emerged through genetic studies in the mouse, such as proteins involved in vesicle transport and in the formation and function of primary (non-motile) cilia. Evidence is presented here that the mouse Tubby gene family member Tubby-like protein 3 (Tulp3) plays an important negative regulatory function in the Hh signalling pathway during embryogenesis, a role not previously associated with the Tubby proteins. Embryos lacking Tulp3 develop severe neural tube defects and polydactyly, along with ectopic activation of Shh target genes in the developing limbs and CNS, and altered Shh mediated axon guidance in the developing spinal cord. Moreover, Tulp3 was found to act largely independently of Shh, as compound Tulp3/Shh mutant embryos retain expression of Shh target genes and related abnormalities. Finally, the Tulp3 protein was found to localize to the primary cilium in cultured cells, implicating Tulp3, and possibly other Tubby proteins as regulators of cilium based signalling. These results have important implications in the understanding of the regulation of the Hh pathway, and in the emergence of Hh related birth defects and tumourigenesis.
    URI for this record
    http://hdl.handle.net/1974/13461
    Collections
    • Queen's Graduate Theses and Dissertations
    • Biochemistry Graduate Theses (July 2007 - Sept 2016)
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV