• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rhizosphere/Soil Microorganisms in the Phytoremediation of Biphenyl and Dioxane

    Thumbnail
    View/Open
    Sun_Bozhi_201005_PHD.pdf.pdf (1.078Mb)
    Date
    2015-07-29
    Author
    Sun, Bozhi
    Metadata
    Show full item record
    Abstract
    Biphenyl and dioxane biodegradation by poplar and willow rhizosphere microorganisms was studied in a phytoremediation test-plot contaminated with biphenyl and dioxane. A dioxane-degrading consortium enriched from the contaminated rhizosphere soil did not use dioxane as the sole source of carbon and energy, but did co-metabolize dioxane in the presence of tetrahydrofuran (THF). An isolate obtained on agar plates containing basal salts and glucose grew on glucose and co-metabolically degraded dioxane after THF degradation. The rate and extent of dioxane degradation by this particular isolate increased with increasing THF concentration. This isolate was subsequently identified as a Flavobacterium by 16S rDNA sequencing. This is the first report of a dioxane-degrading Flavobacterium which is phylogenetically distinct from any previously identified dioxane degrader.

    Rhizosphere microorganisms in the phytoremediation test-plot were capable of degrading biphenyl in the presence of the terminal electron acceptors (TEAs) nitrate, sulfate or carbon dioxide. TEAs (sulfate and carbon dioxide), nutrients in basal salts medium (BSM) or fertilizer enhanced biphenyl degradation. Although root exudates appeared to enhance biphenyl degradation slightly, it was not statistically significant (p > 0.10). A fungus enriched and isolated from the rhizosphere soil, was found to degrade biphenyl under anaerobic conditions only. The fungus was identified by a primer pair ITS4 and ITS1F as Pseudallescheria boydii.

    The microbial community in the rhizosphere of the poplar and willow trees was sampled from different soil locations in the test-plot over a 5-year period. The denaturing gradient gel electrophoresis (DGGE) results indicated that soil type had a significant impact on microbial community composition with a more diverse microbial population in native soil samples than in engineered soil samples. Although tree type had less influence on microbial diversity, diversity did decrease with time in the engineered soil of the willow rhizosphere. There was no significant influence of soil depth on the microbial community. Three aerobic biphenyl-degrading consortia were enriched from different rhizosphere soils, and the major microorganisms found in the enriched consortia were identified by 16S DNA sequencing as being in the family of Flavobacteriaceae, Alcaligenaceae, and Mycobacteriaceae.

    Direct polymerase chain reaction (DPCR) without prior DNA extraction and DGGE yielded the same results as PCR assays using extracted DNA in the analysis of microbial populations in dioxane- and biphenyl-degrading consortia. Therefore, the combination of DPCR and DGGE has the potential for the fast analysis of the microbial populations of environmental and clinical samples with limited diversity.
    URI for this record
    http://hdl.handle.net/1974/13474
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Chemical Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV