Show simple item record

dc.contributor.authorAngelatos, Gerasimosen
dc.date2015-08-25 16:11:19.289
dc.date.accessioned2015-08-26T00:08:39Z
dc.date.available2015-08-26T00:08:39Z
dc.date.issued2015-08-25
dc.identifier.urihttp://hdl.handle.net/1974/13526
dc.descriptionThesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2015-08-25 16:11:19.289en
dc.description.abstractPhotonic crystal slabs coupled with quantum dipole emitters allow one to control quantum light-matter interactions and are a promising platform for quantum information science technologies; however their development has been hindered by inherent fabrication issues. Inspired by recent nanowire growth techniques and opportunities in fundamental quantum nanophotonics, in this thesis we theoretically investigate light-matter interactions in nanowire photonic crystal structures with embedded quantum dots, a novel engineered quantum system, for applications in quantum optics. We develop designs for currently fabricable structures, including finite-size effects and radiative loss, and investigate their fundamental properties using photonic band structure calculations, finite-difference time-domain computations, and a rigorous photonic Green function technique. We study and engineer realistic nanowire photonic crystal waveguides for single photon applications whose performance can exceed that of state-of-the-art slab photonic crystals, and design a directed single photon source. We then develop a powerful quantum optical formalism using master equation techniques and the photonic Green function to understand the quantum dynamics of these exotic structures in open and lossy photonic environments. This is used to explore the coupling of a pair of quantum dots in a nanowire photonic crystal waveguide, demonstrating long-lived entangled states and a system with a completely controllable Hamiltonian capable of simulating a wide variety of quantum systems and entering a unique regime of cavity quantum electrodynamics characterized by strong exchange-splitting. Lastly, we propose and study a "metamaterial" polariton waveguide comprised of a nanowire photonic crystal waveguide with an embedded quantum dot in each unit cell, and explain the properties of both infinite and finite-sized structures using a Green function approach. We show that an external quantum dot can be strongly coupled to these novel waveguides, an achievement which has never been demonstrated in a solid-state platform.en
dc.language.isoengen
dc.relation.ispartofseriesCanadian thesesen
dc.rightsQueen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canadaen
dc.rightsProQuest PhD and Master's Theses International Dissemination Agreementen
dc.rightsIntellectual Property Guidelines at Queen's Universityen
dc.rightsCopying and Preserving Your Thesisen
dc.rightsCreative Commons - Attribution - CC BYen
dc.rightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.en
dc.subjectEngineered Quantum Systemsen
dc.subjectQuantum Light-Matter Interactionsen
dc.subjectNanophotonicsen
dc.subjectPhotonic Crystalsen
dc.subjectQuantum Opticsen
dc.titleTheory and applications of light-matter interactions in quantum dot nanowire photonic crystal systemsen
dc.typethesisen
dc.description.degreeM.A.Sc.en
dc.contributor.supervisorHughes, Stephenen
dc.contributor.departmentPhysics, Engineering Physics and Astronomyen
dc.degree.grantorQueen's University at Kingstonen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record