• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling cooperative gene regulation using Fast Orthogonal Search

    Thumbnail
    View/Open
    Minz_Ian_200808_MSc.pdf (1.328Mb)
    Date
    2008-08-22
    Author
    Minz, Ian
    Metadata
    Show full item record
    Abstract
    A number of computational methods have suggested means by which gene transcription – the process through which RNA is created from DNA – is activated, but there are factors at work that no model has been able to fully explain. In eukaryotes, gene regulation is quite complex, so models have primarily focused on a relatively simple species, Saccharomyces cerevisiae (budding yeast). Because of the inherent complexity in higher species, and even in yeast, a method of identifying transcription factor (TF) binding motifs (specific, short DNA sequences) must be efficient and thorough in its analysis. This thesis shows that a method using the Fast Orthogonal Search (FOS) algorithm to uncover binding motifs as well as cooperatively binding groups of motifs can explain variations in gene expression profiles, which reflect the level at which DNA is transcribed into RNA for a number of genes. The algorithm is very fast, exploring a motif list and constructing a final model within seconds to a few minutes. It produces model terms that are consistent with known motifs, while also revealing new motifs and interactions, and it causes impressive reductions in variance with relatively few model terms over the cell-cycle.
    URI for this record
    http://hdl.handle.net/1974/1364
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Electrical and Computer Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV