• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-scale thermal and circuit analysis for nanometre-scale integrated circuits

    Thumbnail
    View/Open
    Allec_Nicholas_200809_MSc.pdf (2.800Mb)
    Date
    2008-09-27
    Author
    Allec, Nicholas
    Metadata
    Show full item record
    Abstract
    Chip temperature is increasing with continued technology scaling due to increased power density and decreased device feature sizes. Since temperature has significant impact on performance and reliability, accurate thermal and circuit analysis are of great importance. Due to the shrinking device feature size, effects occurring at the nanometre scale, such as ballistic transport of energy carriers and electron tunneling, have become increasingly important and must be considered. However, many existing thermal and circuit analysis methods are not able to consider these effects efficiently, if at all. This thesis presents methods for accurate and efficient multi-scale thermal and circuit analysis. For circuit analysis, the simulation of single-electron device circuits is specifically studied.

    To target thermal analysis, in this work, ThermalScope, a multi-scale thermal analysis method for nanometre-scale IC design is developed. It unifies microscopic and macroscopic thermal physics modeling methods, i.e., the Boltzmann transport and Fourier modeling methods. Moreover, it supports adaptive multi-resolution modeling. Together, these ideas enable efficient and accurate characterization of nanometre-scale heat transport as well as chip-package level heat flow. ThermalScope is designed for full chip thermal analysis of billion-transistor nanometre-scale IC designs, with accuracy at the scale of individual devices. ThermalScope has been implemented in software and used for full chip thermal analysis and temperature-dependent leakage analysis of an IC design with more than 150 million transistors.

    To target circuit analysis, in this work, SEMSIM, a multi-scale single-electron device simulator is developed with an adaptive simulation technique based on the Monte Carlo method. This technique significantly improves the time efficiency while maintaining accuracy for single-electron device and circuit simulation. It is shown that it is possible to reduce simulation time up to nearly 40 times and maintain an average propagation delay error of under 5% compared to a non-adaptive Monte Carlo method. This simulator has been used to handle large circuit benchmarks with more than 6000 junctions, showing efficiency comparable to SPICE, with much better accuracy. In addition, the simulator can characterize important secondary effects including cotunneling and Cooper pair tunneling, which are critical for device research.
    URI for this record
    http://hdl.handle.net/1974/1508
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Electrical and Computer Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV