• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical Investigation of the Scavenging Flow in a Two-Stroke Engine with Passive Intake Valves

    Thumbnail
    View/Open
    Thesis_Philip_Oliver.pdf (9.067Mb)
    Date
    2008-09-27
    Author
    Oliver, Philip Jozef
    Metadata
    Show full item record
    Abstract
    The development of a numerical model of a two-stroke engine is undertaken to study the scavenging characteristics of the engine. The engine design is unique in its use of 16 passive intake valves in the cylinder head which, along with the exhaust ports located at bottom centre (BC), give the engine a top-down uniflow-scavenged configuration. Each valve constitutes a small stainless steel platelet within a cavity in the cylinder head which reacts to the pressure difference across the cylinder head. The principle focus of this study is the transient simulation of the scavenging flow using dynamic meshing to model the piston motion and the response of the passive intake valves to the scavenging flow for varied engine speed and peak pressure. A flowbench study of the steady flow through the cylinder head into a duct is incorporated as a step in the development of the transient numerical model. Validation of the numerical predictions is undertaken by comparing results from an experimental flowbench for the steady case and using a cold-flow scavenging rig for the transient simulations. Both the steady flow through the cylinder head and the unsteady flow within the cylinder indicate the presence of a recirculation region on the cylinder axis. As a result, short-circuiting of scavenging gas becomes considerable and leads to scavenging characteristics comparable to Hopkinson’s perfect mixing one-dimensional scavenging model.
    URI for this record
    http://hdl.handle.net/1974/1526
    Collections
    • Department of Mechanical and Materials Engineering Graduate Theses
    • Queen's Graduate Theses and Dissertations
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV