• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development and Characterization of Polysiloxane Polymer Films for Use in Optical Sensor Technology

    Thumbnail
    View/Open
    Plett_Krista_L_200809_PhD.pdf (2.452Mb)
    Date
    2008-09-28
    Author
    Plett, Krista
    Metadata
    Show full item record
    Abstract
    A novel sensor using a polymer coated long-period grating (LPG) has been proposed for monitoring levels of organic contaminants in air or water systems. The sensor operates by detecting refractive index changes in the polymer coating as analytes partition in. Polymer coatings used must be able to reversibly and reproducibly absorb contaminants of interest from the sample and have a refractive index just below that of the fiber cladding.

    The synthesis and characterization of several chemically selective polysiloxanes is described. Pre-polymer materials are made through the catalyzed condensation of silane monomers. Different functional groups are incorporated either through polymerizing functionalized monomers, or by post-functionalizing the polymer through a platinum-catalyzed hydrosilylation reaction. The pre-polymer materials are crosslinked into elastomeric films using titanium(IV) tetraisopropoxide. The polymer refractive index is controlled through altering the ratios of functional groups within the polymer or changing the loading levels of titanium. Four polymers were made, having different functional groups and optimized refractive indices for use on the proposed sensor.

    The partition coefficients for the polymers with a variety of solvents are calculated and compared. Each polymer was found to have a slightly different chemical selectivity pattern, demonstrating that a set of polymers could be used to generate a sensor array. Partition coefficient data was calculated from the gas phase by considering the change in polymer refractive index as the solvents partitioned into the polymer. The Lorentz-Lorenz equation was used to model the relationship between the change in refractive index and the solvent concentration within the polymer.

    Finally, polymers were applied to LPGs and used to successfully detect various solvents from the gas phase. This was accomplished by monitoring the entire LPG spectrum, and also by considering loss at a single wavelength using fiber-loop ring-down spectroscopy.
    URI for this record
    http://hdl.handle.net/1974/1527
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Chemistry Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV