Show simple item record

dc.contributor.authorFernando, John
dc.contributor.otherQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))en
dc.date.accessioned2017-01-04T21:19:04Z
dc.date.available2017-01-04T21:19:04Z
dc.identifier.urihttp://hdl.handle.net/1974/15301
dc.description.abstractTo find examples of effecient locomotion and manoeuvrability, one need only turn to the elegant solutions natural flyers and swimmers have converged upon. This dissertation is specifically motivated by processes of evolutionary convergence, which have led to the propulsors and body shapes in nature that exhibit strong geometric collapse over diverse scales. These body features are abstracted in the studies presented herein using low-aspect-ratio at plates and a three-dimensional body of revolution (a sphere). The highly-separated vortical wakes that develop during accelerations are systematically characterized as a function of planform shape, aspect ratio, Reynolds number, and initial boundary conditions. To this end, force measurements and time-resolved (planar) particle image velocimetry have been used throughout to quantify the instantaneous forces and vortex evolution in the wake of the bluff bodies. During rectilinear motions, the wake development for the flat plates is primarily dependent on plate aspect ratio, with edge discontinuities and curvature playing only a secondary role. Furthermore, the axisymmetric case, i.e. the circular plate, shows strong sensitivity to Reynolds number, while this sensitivity quickly diminishes with increasing aspect ratio. For rotational motions, global insensitivity to plate aspect ratio has been observed. For the sphere, it has been shown that accelerations play an important role in the mitigation of flow separation. These results - expounded upon in this dissertation - have begun to shed light on the specific vortex dynamics that may be coopted by flying and swimming species of all shapes and sizes towards efficient locomotion.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesCanadian thesesen
dc.rightsCC0 1.0 Universal*
dc.rightsQueen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canadaen
dc.rightsProQuest PhD and Master's Theses International Dissemination Agreementen
dc.rightsIntellectual Property Guidelines at Queen's Universityen
dc.rightsCopying and Preserving Your Thesisen
dc.rightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.en
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectvortex dynamicsen_US
dc.subjectflow separationen_US
dc.subjectadded-massen_US
dc.titleVortex evolution in the wake of accelerating low-aspect-ratio plates and three-dimensional bodies of revolutionen_US
dc.typethesisen_US
dc.description.degreeDoctor of Philosophyen_US
dc.contributor.supervisorRival, David E.en
dc.contributor.departmentMechanical and Materials Engineeringen


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal