• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Organically Modified Mesoporous Silica as a Support for Synthesis and Catalysis

    Thumbnail
    View/Open
    McEleney_Kevin_A_200904_PhD.pdf (13.50Mb)
    Date
    2009-04-22
    Author
    McEleney, Kevin
    Metadata
    Show full item record
    Abstract
    Mesoporous silicates are excellent materials for supported catalysis due to their ease of functionalization, tunable pore size and high surface areas. Mesoporous silicates have been utilized in a variety of applications such as drug delivery scaffolds and catalyst supports. Functionalization of the surface can be achieved by either grafting of alkoxy silanes or co-condensation of the organosilane with the inorganic silica source.

    My research in this area can be divided into two components. In the first, we address the significant issue of metal contamination after reactions that are catalyzed by transition metals. In the second, we examine the design of new catalysts based on organic/inorganic composites.

    Ruthenium catalyzed processes such as olefin metathesis or asymmetric hydrogenation, are often underutilized due to the difficulty of removing the ruthenium by-products. Attempts to remove ruthenium involve treating the solution with a scavenging reagent followed by silica chromatography. Often these scavenging agents are expensive phosphines or toxic agents like lead tetra-acetate. SBA-15 functionalized with aminopropyl triethoxysilane displays a high affinity for ruthenium. Furthermore, it can be utilized to remove ruthenium by-products from olefin metathesis or hydrogenation reactions without the need for silica chromatography.

    We have also prepared sulfur-functionalized mesoporous silicates that have a high affinity for palladium. The materials after loading prove to be active catalysts for a variety of palladium catalyzed processes such as Suzuki-Miyaura and Sonogashira couplings. The catalysts are recyclable with moderate loss of activity and structure, depending on the method of incorporation of the thiol. We have characterized the as-synthesized and used catalysts by nitrogen sorption, TEM, X-ray photoelectron spectroscopy (XPS) and a variety of homogeneity tests were performed on the catalysts.

    Periodic mesoporous organosilicates (PMOs) are a well known class of inorganic-organic hybrid materials. The majority of PMOs prepared utilize simple organic bridges such as ethyl, phenyl or biphenyl. The use of a chiral organic bridging group, such as BINAP, allows the synthesis of chiral PMOs with possible applications in catalysis and separation science. The synthesis of a triethoxysilyl functionalized BINAP as well as its incorporation into PMO materials with 4,4’-bistriethoxysilyl biphenyl or tetraethylorthosilicate as co-silica sources are described.
    URI for this record
    http://hdl.handle.net/1974/1763
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Chemistry Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV