• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CFRP Tendons For The Repair Of Post-Tensioned, Ubonded Concrete Buildings

    Thumbnail
    View/Open
    Amato_Lucio_R_200904_MSc.pdf (4.302Mb)
    Date
    2009-04-23
    Author
    Amato, Lucio Roger
    Metadata
    Show full item record
    Abstract
    The deterioration of prestressed concrete structures due to corrosion is a costly problem. This problem is accelerated in cold weather climates where de-icing salts are used. These salts accelerate the corrosion of the steel tendons greatly reducing the service life of the structures and leading to constant costly repairs. Recent research has shown composite materials such as Fibre Reinforced Polymers (FRP) to be suitable alternatives to steel, providing similar strength without being susceptible to electrochemical corrosion. Carbon FRP in particular has great promise for prestressed applications, showing resistance to corrosion in environments that might be encountered in concrete and experiencing less relaxation than steel.

    This thesis outlines the testing and implementation of a post-tensioned system that uses CFRP tendons to replace corroded, unbonded post-tensioned steel tendons. This system was then implemented in a parking garage in downtown Toronto. To the author’s knowledge, this is the first example of an unbonded, post-tensioned tendon replacement using FRP tendons. The system used split wedge anchors designed specifically for CFRP tendons at the University of Waterloo. The dead end was anchored by directly bonding the tendon to the concrete slab. Overall, the system was shown to work and provide a durable solution for unbonded post-tensioning systems. The CFRP tendon was successfully inserted in the opening left by the removal of the corroded tendon and stressed. It was found that the current anchorage configuration experienced large load losses of up to 60 % during the transfer. Changing the orientation of the anchor was found to reduce the load lost to a range of 1 % to 9 %.
    URI for this record
    http://hdl.handle.net/1974/1775
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Civil Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV