Robotics in Mining
Date
2016Author
Marshall, Joshua
Bonchis, Adrian
Nebot, Eduardo
Scheding, Steve
Metadata
Show full item recordAbstract
This chapter presents an overview of the state of the art in mining robotics, from surface to underground applications, and beyond. Mining is the practice of extracting resources for utilitarian purposes. Today, the international business of mining is a heavily mechanized industry that exploits the use of large diesel and electric equipment. These machines must operate in harsh, dynamic, and uncertain environments such as, for example, in the high arctic, in extreme desert climates, and in deep underground tunnel networks where it can be very hot and humid. Applications of robotics in mining are broad and include robotic dozing, excavation, and haulage, robotic mapping and surveying, as well as robotic drilling and explosives handling. This chapter describes how many of these applications involve unique technical challenges for field roboticists. However, there are compelling reasons to advance the discipline of mining robotics, which include not only a desire on the part of miners to improve productivity, safety, and lower costs, but also out of a need to meet product demands by accessing orebodies situated in increasingly challenging conditions.
URI for this record
http://hdl.handle.net/1974/22979Collections
Request an alternative format
If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology CentreRelated items
Showing items related by title, author, creator and subject.
-
Technological Moral Proxies and the Ethical Limits of Automating Decision-Making In Robotics and Artificial Intelligence
Millar, Jason (2015-10-29)Humans have been automating increasingly sophisticated behaviours for some time now. We have machines that lift and move things, that perform complex calculations, and even machines that build other machines. More recently, ... -
Robotic Needle-based Intra-cavitary Surgery (InCavBot)
Madjidi, YasharIntra-cavitary needle-based interventions are challenging due to highly deformable cavity and targeted tissue motions. Multi-needle insertions are more challenging given the continuously shifting boundary conditions of ... -
Experiments in feedback linearized iterative learning‐based path following for center‐articulated industrial vehicles
Dekker, Lukas G.; Marshall, Joshua A.; Larsson, Johan (John Wiley & Sons, Inc., 2019-02-13)This paper describes the design, industrial application, and field testing of a technique for autonomous wheeled‐vehicle path following that uses iterative learning control (ILC) in a feedback linearized space. One advantage ...