• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Studies on Optically Induced DC-Voltage in Thin Film Structures

    Thumbnail
    View/Open
    Mohammad_Ali_Mirzaee_Somayeh_201812_PhD.pdf (4.046Mb)
    Author
    Mirzaee, Somayeh
    Metadata
    Show full item record
    Abstract
    Conversion of light into direct current is important for applications ranging from energy conversion to photodetection. However, there are still many challenges to reach high conversion efficiency and broad spectral coverage. Overall, photodetection through conventional procedures is based on light absorption by a material with a matching bandgap. This traditional approach limits the range of wavelengths that can be detected, it is not sensitive to polarization, and loses accuracy in the infrared range because of thermal noise. In order to design and optimize a photodetector that can overcome those limitations, I first built an instrument to evaluate the functionality of the proposed devices. Different devices and structures were fabricated and tested by means of photodetection in order to clearly identify the origin of the detected photovoltages. Further investigations on rectenna configurations and nonlinear optical rectification process showed promising results for photovoltage generation in a broadband scheme.

    A photodetector that combines polarization sensitivity and circularly polarized light sensitivity in the near infrared region was fabricated using an ITO-Au hybrid layer. Furthermore, the sensitivity of the device was significantly increased by adding a poled molecular-glass film in a capacitor configuration. The resulting device is capable of detecting light below the ITO-bandgap at ambient temperature without any bias voltage. It does not rely on the photoelectric effect, which is at the origin of the photovoltaic effect in semiconductor devices. It works based on hot electron emission in plasmonic nanostructures. This photodetector, which is amenable to large-area fabrication, can be integrated with other nanophotonic and nanoplasmonic structures for operation at telecom wavelengths.

    I then show how an array of aligned plasmonic nanorods covalently coupled to molecular rectifiers can also be used as optical nanoantennas to harvest the light and convert it into a DC-potential difference, which may be practical for energy production. I discuss the design, rectification processes, and propos two antenna fabrication procedures: electrochemical deposition and e-beam lithography.
    URI for this record
    http://hdl.handle.net/1974/25913
    Collections
    • Department of Physics, Engineering Physics and Astronomy Graduate Theses
    • Queen's Graduate Theses and Dissertations
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV