• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal payoff to ensure opacity in Discrete-Event Systems

    Thumbnail
    View/Open
    Thesis document (537.3Kb)
    Author
    Abedi Khouzani, Zahra
    Metadata
    Show full item record
    Abstract
    Opacity is a property of systems which guarantees that an outside observer cannot distinguish some behaviour of the system (secrets) from other behaviours (non-secrets). Many companies and government agencies like to make some aspects of their processes opaque to any observer while still needing to reveal some information. To enforce opacity, discrete-event systems have been employed and many algorithms are proposed. One naive way of achieving opacity is to hide everything. However, in many applications this is not possible either due to legal obligations or due to the requirement of sharing as much information as possible with other companies or with the public. Some algorithms have been developed that reveal as much information as possible while keeping a system opaque. However, these algorithms are very computationally complex and they treat all the revealed transitions equally (which might not be a reasonable assumption in real-world applications). Thus, to solve the complexity problem we propose using a dynamic programming approach, which relies on the solution to the longest common subsequence problem. This approach can lower the complexity of the solution at least for some cases (namely, systems with no loops). Secondly, we propose to add utilities for revealing transitions and provide algorithms that enforce weak opacity while guaranteeing a maximum payoff. The correctness of the algorithms are proven and their computational complexities are computed.
    URI for this record
    http://hdl.handle.net/1974/26628
    Collections
    • Department of Electrical and Computer Engineering Graduate Theses
    • Queen's Graduate Theses and Dissertations
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV