• Login
    View Item 
    •   Home
    • Scholarly Contributions
    • Physics, Engineering Physics and Astronomy, Department of
    • Department of Physics, Engineering Physics and Astronomy Faculty Publications
    • View Item
    •   Home
    • Scholarly Contributions
    • Physics, Engineering Physics and Astronomy, Department of
    • Department of Physics, Engineering Physics and Astronomy Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Light induced electro-luminescence patterning: interface energetics modification at semiconducting polymer and metal-oxide heterojunction in a photodiode

    Thumbnail
    View/Open
    manuscript accepted by the journal (13.32Mb)
    Date
    2018-10-01
    Author
    Bobbara, Sanyasi
    Salim, Ehab
    Barille, Regis
    Nunzi, JM
    Metadata
    Show full item record
    Abstract
    Understanding the injection barriers and defect states at the metal−organic or inorganic−organic interfaces is one of the key challenges in improving the efficiency of hybrid electronic devices. In this paper, polymer and metal-oxide-based photodiodes are subjected to light soaks to probe the interface and bulk induced defects and energetics. Polymers poly(3-hexylthiophene-2,5-diyl) and poly[N-9′-heptadecanyl-2,7-carbazole-alt- 5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] were used as active medium in an “inverted” sandwich-type device configuration to study the effect of light soak on current− voltage, charge trapped and stored, electroluminescence, photovoltage, and photocurrent characteristics. The results collectively demonstrate a modification to the cathode contact and polymer interface energetics. Ultraviolet (UV)-assisted photodesorption of oxidizing agents at the interface of nanostructured zinc oxide derived from a sol−gel precursor and the polymer lowers the magnitude of cathode work function. As a result, we have realized an efficient light-emitting diode stencilled out of the diode after UV exposure. The work function and interface barrier modification followed by energy band bending within the device is proposed. Our results emphasize the role of unintentional injection barriers and a solution to the issue often encountered in the hybrid organic−inorganic electronic devices.
    URI for this record
    http://hdl.handle.net/1974/27429
    External DOI
    https://doi.org/10.1021/acs.jpcc.8b07033
    Collections
    • Department of Physics, Engineering Physics and Astronomy Faculty Publications
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV