Show simple item record

dc.contributor.authorBolgkoranou, Mariaen
dc.date.accessioned2020-01-07T20:02:14Z
dc.date.available2020-01-07T20:02:14Z
dc.identifier.urihttp://hdl.handle.net/1974/27538
dc.description.abstractIn the mining industry, there is interest in the use of spatial processes to model spatially collected data. For the multivariate observations, we should model associations at a specific location and between locations, but also among variables. Common methods for multivariate modeling rely on the Linear Model of Coregionalization (LCM), which is limited in higher dimensions and generates models that do not properly reproduce the features of the original multivariate samples. In this thesis we present a simple methodology for multivariate geostatistical modeling of compositional data using Principal Component Analysis (PCA). According to the methodology, grades are, first, transformed to log-ratios. Then, these log-ratios are linearly transformed to Principal Components (PCs). PCA tends to spatially decorrelate the factors, allowing for the independent simulation of each PCs, instead of requiring a co-simulation. Sequential Gaussian Simulation is performed independently on each Principal Component and the simulated factors are then back-transformed to simulated log-ratios, and these are finally back-transformed to grades. Using a 6-dimensional data set from a Nickel-Laterite deposit, we demonstrate the difference between the proposed methodology and classical co-simulation. The statistics and the further validation of the back-transformed grades after PCA and Sequential Gaussian Simulation showed that the proposed methodology tends to respect the relationships between the variables whereas co-simulation of the grades tends to respect the statistics but the reproduced relationships are not representative.en
dc.language.isoengen
dc.relation.ispartofseriesCanadian thesesen
dc.rightsCC0 1.0 Universalen
dc.rightsQueen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canadaen
dc.rightsProQuest PhD and Master's Theses International Dissemination Agreementen
dc.rightsIntellectual Property Guidelines at Queen's Universityen
dc.rightsCopying and Preserving Your Thesisen
dc.rightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.en
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.subjectGeostatisticsen
dc.subjectMultivariate Geostatistical Modelingen
dc.subjectPrincipal Component Analysisen
dc.titleMultivariate geostatistical simulation of compositional data using Principal Component Analysisen
dc.typethesisen
dc.description.degreeM.A.Sc.en
dc.contributor.supervisorOrtiz, Julianen
dc.contributor.departmentMining Engineeringen
dc.embargo.liftdate2025-01-07
dc.degree.grantorQueen's University at Kingstonen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal