Polymer Branching and First Normal Stress Differences in Small-Amplitude Oscillatory Shear Flow
Abstract
General rigid bead-rod theory [Hassager, J Chem Phys, 60, 4001 (1974)] explains polymer viscoelasticity from macromolecular orientation. By means of general rigid bead-rod theory, we relate the normal stress differences of polymeric liquids to the branch position on a backbone branched macromolecule. In this work, we explore the first normal stress differences coefficients of different axisymmetric polymer configurations. When non-dimensionalized with the zero-shear first normal stress difference coefficient, the normal stress differences depend solely on the dimensionless frequency. In this work, in this way, we compare and contrast the normal stress differences of macromolecular chains that are branched. We explore the effects of branch position, length, functionality, spacing, and multiplicity, along a straight chain, in addition to rings and star-shaped macromolecules in small-amplitude oscillatory shear flow.
URI for this record
http://hdl.handle.net/1974/27790Collections
Request an alternative format
If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology CentreRelated items
Showing items related by title, author, creator and subject.
-
Large-Amplitude Oscillatory Shear Flow Loops for Long-Chain Branching From General Rigid Bead-Rod Theory
Kanso, Mona A.; Giacomin, A. Jeffrey; Saengow, Chaimongkol (2020-04)General rigid bead-rod theory [Hassager, J Chem Phys, 60, 4001 (1974)] explains polymer viscoelasticity from macromolecular orientation. By means of this theory, we relate the complex viscosity of polymeric liquids to the ... -
Van Gurp-Palmen Relations for Long-Chain Branching From General Rigid Bead-Rod Theory
Kanso, Mona A.; Giacomin, A. Jeffrey (2020-02)Empirically, we find that parametric plots of mechanical loss angle versus complex shear modulus may depend neither on temperature [van Gurp and Palmen, Rheol Bull (SoR), 67, 5 (1998)], nor on average molecular weight ... -
Fourier Decomposition of Polymer Orientation in Large-Amplitude Oscillatory Shear Flow
Giacomin, A. Jeffrey; Gilbert, Peter H.; Schmalzer, Andrew M. (2015-03-17)In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following ...