A sugar-template manufacturing method for microsystem ion-exchange membranes

View/ Open
Date
2017-06Author
Festarini, Rio V.
Pham, Minh-Hao
Liu, Xinyue
Barz, Dominik P. J.
Metadata
Show full item recordAbstract
In this work, we report on a novel method for producing ion-exchange membranes that can be integrated directly into polydimethylsiloxane-based micro devices. Ionomers such as NafionTM, a copolymer with high conductivity and selectivity to small cations, are generally incompatible with common micro device materials due to the chemical inertness of the tetrafluoroethylene-based skeleton and the swelling in aqueous solutions. Hence, we introduce a microfabrication concept where we use consolidated sugar granules as a template to produce a porous polydimethylsiloxane scaffold. Ionomer and scaffold are combined to a composite membrane where the cohesion of these incompatible materials is of rather mechanical nature; i.e. the ionomer is physically entrapped in the scaffold. Electrochemical impedance spectroscopy measurements reveal the excellent membrane conductivity for the upper electrolyte concentrations tested in this work.