• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Firn Pack Changes on White Glacier, Axel Heiberg Island, Nunavut

    Thumbnail
    View/Open
    Thesis document (5.526Mb)
    Author
    Stephenson, Dana
    Metadata
    Show full item record
    Abstract
    The near-surface processes and variability within the firn pack of Arctic glaciers are a significant source of uncertainty in estimating future glacier responses to climate warming. This study provides the first characterization of the firn pack of White Glacier, Axel Heiberg Island, Nunavut, and an analysis of recent firn pack changes (2013-2019). Utilizing ground penetrating radar (GPR) surveys the firn pack thickness, extent, and associated topographic controls on firn distribution were determined. Two methods of GPR analysis were tested in this study. The first followed the traditional approach of conducting visual interpretation of radargrams to identify zones of backscatter associated with firn. The second is a proposed new methodology that uses average backscatter values from each radar return as a proxy indicator of firn presence in the subsurface. The results of these two approaches showed that the firn pack on White Glacier has reduced in extent, and reductions in average backscatter values suggest that the density of the firn has increased in the near surface. Overall, the long-term firn area decreased in extent by 3.96 km2 (10% of the total glacier area) between 2013 and 2018. Rates of surface lowering were determined using dual-frequency GPS surveys. For spring 2018 to spring 2019 the rate was -0.165 ± 0.29 m a-1 in the accumulation area, likely driven by the near surface densification. The potential for average backscatter values to provide information about near surface snow water equivalence is also explored.
    URI for this record
    http://hdl.handle.net/1974/28075
    Collections
    • Department of Geography and Planning Graduate Theses
    • Queen's Graduate Theses and Dissertations
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV