• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modelling Stock Market Manipulation in Online Forums

    Thumbnail
    View/Open
    Thesis Document (1.933Mb)
    Author
    Nam, David
    Metadata
    Show full item record
    Abstract
    Over the past several decades, advances in technology have significantly impacted all aspects of the financial system. While it has led to numerous benefits, it has also increased the methods for manipulating the market. A frequent platform used to perform these market manipulation schemes has been through social media. In particular, online forums have become a tool for manipulators to disseminate false or misleading information so that they can profit from other investors. As a result, my research provides investors with valuable insights and the tools necessary for detecting pump-and-dump schemes. To achieve this, posts and comments within financial forums were first collected. Then, financial data was added to associate the texts with resulting market behaviours. By using statistical methods, the records were then initially labelled depending on whether they exhibited a known market pattern that commonly occurs when investors act upon deceptive content. To further improve upon the labelling method, comments of deceptive posts were then relabelled based on their level of agreement to fraudulent information. With the described agreement model, results showed that predictions among the tested classification techniques (XGBoost, Random Forest, SVM, MLP, CNN, BiLSTM) were improved. Additionally, by comparing the performance of the classifiers, CNNs were found to be the best performing model among those that were tested.
    URI for this record
    http://hdl.handle.net/1974/28239
    Collections
    • School of Computing Graduate Theses
    • Queen's Graduate Theses and Dissertations
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV