• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling the Phase Response of an Optical Filter with Application to Cascaded Filtering in an Optical Link

    Thumbnail
    View/Open
    Thesis document (32.63Mb)
    Author
    Bagheri, Mina
    Metadata
    Show full item record
    Abstract
    To accurately characterize the effects of optical filters, it is crucial to model the filter's frequency response as precisely as possible. Given that the amplitude response of an optical filter can be obtained through theoretical models and/or experiments, the main objective of this thesis is to investigate techniques for determining the optical filter's phase response from its amplitude response.

    To achieve this, the Hilbert transform technique and the direct numerical integration technique based on Kramers-Kronig relations are utilized. The most accurate method is to calculate the filter's group delay response and then integrate it to obtain the phase response through the direct numerical integration technique. The integration is approximated using the trapezoidal rule. Additionally, maximum out-of-band attenuation and smoothing in a specific interval around the intersection of the filter slope and the maximum out-of-band attenuation are applied to the amplitude response to align it with practical devices.

    The second objective of this thesis is to determine the phase response of the WSS filter based on its amplitude response using the most effective technique. The amplitude response of the WSS filter is modeled analytically and also measured using a Finisar WaveShaper 1000S and a broadband noise source as input.

    The simulation results show that, after applying maximum out-of-band attenuation of 54 dB and smoothing in a 6 GHz interval around the intersection, the group delay response of a 38 GHz wide WSS filter changed non-linearly between -20 to 80 ps and, correspondingly, the phase response changed between -2 to 16 rad in the [0, 150] GHz frequency range.

    Finally, an application of obtaining the optical filter's phase response is demonstrated in this study. For this purpose, the impact of incorporating the phase response in the cascaded filtering effect in an optical link is studied. The simulated optical link comprised 10 spans, and a 28 Gbaud DP 64-QAM signal is subjected to a distributed ASE noise configuration. Generalized Mutual Information (GMI) is calculated as a system performance metric. The results indicate that the phase response can have a significant impact on signal performance in an optical system. Moreover, the impact of the location of cascaded WSS filters in the system, including the phase response of the cascaded WSS filters, is investigated.
    URI for this record
    http://hdl.handle.net/1974/31476
    Collections
    • Department of Electrical and Computer Engineering Graduate Theses
    • Queen's Graduate Theses and Dissertations
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    Related items

    Showing items related by title, author, creator and subject.

    • Three-Wavelength Tm3+:ZBLAN Fiber Laser and its Applications in Water Detection 

      Jia, Chenglai; Ramaswamy, Kishor; Chen, Lawrence R.; MacLean, Amy G.; Andrews, Nicholas L. P.; Saunders, John; Barnes, Jack A.; Loock, Hans-Peter; Saad, Mohammed (2016-02-25)
      We demonstrate a three-wavelength Tm3+:ZBLAN fiber laser emitting simultaneously at 1460 nm, 1503 nm, and 1873 nm and its application in single-pass absorption measurements for detecting and quantifying water concentration ...
    • Searching for Evidence of Optical Rectification: Optically-Induced Nonlinear Photovoltage in a Capacitor Configuration 

      Mirzaee, Somayeh; Nunzi, Jean-Michel (Optical Society of America, 2018-12-12)
      A current challenge in photonics is to design new versatile photodetectors based on optical rectification induced photo-voltage; these ones are more attractive than classical photodetectors because they do not rely on band ...
    • Studies on Optically Induced DC-Voltage in Thin Film Structures 

      Mirzaee, Somayeh
      Conversion of light into direct current is important for applications ranging from energy conversion to photodetection. However, there are still many challenges to reach high conversion efficiency and broad spectral coverage. ...

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV