• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Lightweight Top-K Analysis in DBMSs Using Data Stream Analysis Techniques

    Thumbnail
    View/Open
    Huang_Jing_200909_MSc.pdf (1.749Mb)
    Date
    2009-09-03
    Author
    Huang, Jing
    Metadata
    Show full item record
    Abstract
    Problem determination is the identification of problems and performance issues that occur in an observed system and the discovery of solutions to resolve them. Top-k analysis is common task in problem determination in database management systems. It involves the identification of the set of most frequently occurring objects according to some criteria, such as the top-k most frequently used tables or most frequent queries, or the top-k queries with respect to CPU usage or amount of I/O.

    Effective problem determination requires sufficient monitoring and rapid analysis of the collected monitoring statistics. System monitoring often incurs a great deal of overhead and can interfere with the performance of the observed system. Processing vast amounts of data may require several passes through the analysis system and thus be very time consuming.

    In this thesis, we present our lightweight top-k analysis framework in which lightweight monitoring tools are used to continuously poll system statistics producing several continuous data streams which are then processed by stream mining techniques. The results produced by our tool are the “top-k” values for the observed statistics. This information can be valuable to an administrator in determining the source of a problem.

    We implement the framework as a prototype system called Tempo. Tempo uses IBM DB2’s snapshot API and a lightweight monitoring tool called DB2PD to generate the data streams. The system reports the top-k executed SQL statements and the top-k most frequently accessed tables in an on-line fashion. Several experiments are conducted to verify the feasibility and effectiveness of our approach. The experimental results show that our approach achieves low system overhead.
    URI for this record
    http://hdl.handle.net/1974/5130
    Collections
    • Queen's Graduate Theses and Dissertations
    • School of Computing Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV