• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of Caffeine on Exercising Muscle Blood Flow and Exercise Tolerance in Type II Diabetes

    Thumbnail
    View/Open
    Poitras_Veronica_J_200909_MSc.pdf (3.366Mb)
    Date
    2009-09-17
    Author
    Poitras, Veronica
    Metadata
    Show full item record
    Abstract
    BACKGROUND: Exercise is a critical treatment modality in persons with Type II Diabetes Mellitus (T2DM), however people with this disease experience chronic fatigue and a decreased exercise capacity, which affects their ability or willingness to participate in physical activity. Studies suggest that this exercise intolerance may be partly due to a reduced exercising muscle blood flow (MBF), and in particular to a reduced ability of red blood cells (RBCs) to evoke ATP-mediated vasodilation and an increase in MBF as they traverse areas of high O2 demand. Additional evidence suggests that caffeine may attenuate this impairment by enhancing the release of ATP from RBCs.

    HYPOTHESIS: Persons with T2DM would have reduced Forearm Blood Flow (FBF), oxygen consumption (VO2), and exercise tolerance responses to exercise compared to control (CON) subjects, and caffeine would attenuate these impairments.

    METHODS: T2DM (n = 4) and CON (n = 4) participants performed rhythmic forearm handgrip exercise at an intensity equivalent to 17.5 kg until “task failure” or 20 minutes of exercise was reached, after having consumed either a caffeine (5mg/kg; Caff) or placebo (Pl) capsule. FBF (Doppler and Echo ultrasound of the brachial artery), VO2 and lactate efflux (deep venous blood sampling), forearm vascular conductance (FVK), mean arterial pressure (MAP) and heart rate (HR) were quantified for each minute of exercise.

    RESULTS: Steady state FBF was similar across groups and treatment conditions (mean ± SE ml/min; CONCaff 553.80 ± 82.35, CONPl 583.42 ± 112.62, T2DMCaff 523.33 ± 105.39, T2DMPl 569.08 ± 134.20, NS), and this was due to similar MAP and FVK (across groups and treatment conditions, NS). VO2 and Time to Task Failure (TTF) were not different between groups and treatment conditions (NS), although TTF tended to be improved with caffeine versus placebo (10.00 ± 2.02 vs 8.24 ± 1.79 min, P=0.295). There was a strong positive relationship between FBF and TTF (r2=0.763; P=0.005).

    CONCLUSIONS: In the exercise model utilized, persons with T2DM do not have impaired cardiovascular responsiveness or reduced exercise tolerance, and caffeine does not provide any benefit. Differences in exercising MBF may be an underlying mechanism regarding differences in exercise tolerance.
    URI for this record
    http://hdl.handle.net/1974/5164
    Collections
    • Queen's Graduate Theses and Dissertations
    • School of Kinesiology & Health Studies Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV