• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pen-Chant : Acoustic Emissions of Handwriting and Drawing

    Thumbnail
    View/Open
    Seniuk_Andrew_G_200909_MSc.pdf (6.512Mb)
    Date
    2009-09-27
    Author
    Seniuk, Andrew G.
    Metadata
    Show full item record
    Abstract
    The sounds generated by a writing instrument ("pen-chant") provide a rich and under-utilized source of information for pattern recognition. We examine the feasibility of recognition of handwritten cursive text, exclusively through an analysis of acoustic emissions. We design and implement a family of recognizers using a template matching approach, with templates and similarity measures derived variously from: smoothed amplitude signal with fixed resolution, discrete sequence of magnitudes obtained from peaks in the smoothed amplitude signal, and ordered tree obtained from a scale space signal representation. Test results are presented for recognition of isolated lowercase cursive characters and for whole words. We also present qualitative results for recognizing gestures such as circling, scratch-out, check-marks, and hatching. Our first set of results, using samples provided by the author, yield recognition rates of over 70% (alphabet) and 90% (26 words), with a confidence of 8%, based solely on acoustic emissions. Our second set of results uses data gathered from nine writers. These results demonstrate that acoustic emissions are a rich source of information, usable - on their own or in conjunction with image-based features - to solve pattern recognition problems. In future work, this approach can be applied to writer identification, handwriting and gesture-based computer input technology, emotion recognition, and temporal analysis of sketches.
    URI for this record
    http://hdl.handle.net/1974/5236
    Collections
    • Queen's Graduate Theses and Dissertations
    • School of Computing Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV