Show simple item record

dc.contributor.authorHirschorn, Ron M.en
dc.contributor.authorLewis, Andrew D.en
dc.date30/06/2002
dc.date.accessioned2004-11-01T21:07:37Z
dc.date.available2004-11-01T21:07:37Z
dc.date.created06/03/2004en
dc.date.issued2002
dc.identifier.urihttp://hdl.handle.net/1974/52
dc.descriptionPreprinten
dc.description.abstractIn a geometric point of view, a nonlinear control system, affine in the controls, is thought of as an affine subbundle of the tangent bundle of the state space. In deriving conditions for local controllability from this point of view, one should describe those properties of the affine subbundle that either ensure or prohibit local controllability. In this paper, second-order conditions of this nature are provided. The techniques involve a fusion of well-established analytical methods with differential geometric ideas.en
dc.format.extent684442 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.titleGeometric local controllability: second-order conditionsen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record