• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transcendence of Various Infinite Series and Applications of Baker's Theorem

    Thumbnail
    View/Open
    Weatherby_Chester_J_200904_PhD.pdf (454.9Kb)
    Date
    2009-11-13
    Author
    Weatherby, Chester
    Metadata
    Show full item record
    Abstract
    We consider various infinite series and examine their arithmetic nature. Series of interest are of the form $$\sum_{n =0}^{\infty} \frac{f(n)A(n)}{B(n)}, \;\;\;\; \sum_{n \in \mathbb{Z}}\frac{f(n)A(n)}{B(n)}, \;\;\;\; \sum_{n=0}^{\infty} \frac{z^n A(n)}{B(n)}$$ where $f$ is algebraic valued periodic function, $A(x), B(x) \in \overline{\mathbb{Q}}[x]$ and $z$ is an algebraic number with $|z| \leq 1$. We also examine multivariable extensions $$\sum_{n_1, \ldots, n_k = 0}^{\infty} \frac{f(n_1,

    \ldots, n_k)A_1(n_1) \cdots A_k(n_k)}{B_1(n_1) \cdots B_k(n_k)}$$ and $$\sum_{n_1, \ldots, n_k \in \mathbb{Z}} \frac{f(n_1, \ldots, n_k)A_1(n_1) \cdots A_k(n_k)}{B_1(n_1) \cdots B_k(n_k)}.$$

    These series are all very natural things to write down and we would like to understand them better. We calculate closed forms using various techniques. For example, we use relations between Hurwitz zeta functions, digamma functions, polygamma functions,

    Fourier analysis, discrete Fourier transforms, among other objects and techniques. Once closed forms are found, we make use of some of the well-known transcendental number theory including the

    theorem of Baker regarding linear forms in logarithms of algebraic numbers to determine their arithmetic nature.

    In one particular setting, we extend the work of Bundschuh \cite{bundschuh} by proving the following series are all

    transcendental for positive $c \in \mathbb{Q} \setminus \mathbb{Z}$ and $k$ a positive integer: $$\sum_{n \in \mathbb{Z}} \frac{1}{(n^2 + c)^k}, \;\;\; \sum_{n \in \mathbb{Z}} \frac{1}{(n^4 - c^4)^{2k}}, \;\;\; \sum_{n \in \mathbb{Z}} \frac{1}{(n^6 - c^6)^{2k}}, \;\;\; \sum_{n \in \mathbb{Z}} \frac{1}{(n^3 \pm c^3)^{2k}}$$

    $$\sum_{n \in \mathbb{Z}} \frac{1}{n^3 \pm c^3}, \;\;\; \sum_{|n| \geq 2} \frac{1}{n^3 -1}, \;\;\; \sum_{|n| \geq 2} \frac{1}{n^4 -1}, \;\;\; \sum_{|n| \geq 2} \frac{1}{n^6 -1}.$$ Bundschuh conjectured that the last three series are transcendental, but we offer the first unconditional proofs of transcendence.

    We also show some conditional results under the assumption of some well-known conjectures. In particular, for $A_i(x), B_i(x) \in \overline{\mathbb{Q}}[x]$ with each $B_i(x)$ has only simple rational roots, if Schanuel's conjecture is true, the series

    (avoiding roots of the denominator) $$\mathop{{\sum}}_{n_1, \ldots, n_k =0}^{\infty} \frac{f(n_1, \ldots, n_k)A_1(n_1) \cdots A_k(n_k)}{B_1(n_1) \cdots B_k(n_k)}$$ is either an effectively computable algebraic number or transcendental.

    We also show that Schanuel's conjecture implies that the series $$\sum_{n \in \mathbb{Z}} \frac{A(n)}{B(n)}$$ is either zero or transcendental, when $B(x)$ has non-integral roots.

    We develop a general theory, analyzing various infinite series throughout.
    URI for this record
    http://hdl.handle.net/1974/5315
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Mathematics and Statistics Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV