Show simple item record

dc.contributor.authorPowell, J. Suzanne
dc.contributor.otherQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))en
dc.date2010-01-29 01:34:14.071en
dc.date.accessioned2010-01-29T20:08:07Z
dc.date.available2010-01-29T20:08:07Z
dc.date.issued2010-01-29T20:08:07Z
dc.identifier.urihttp://hdl.handle.net/1974/5410
dc.descriptionThesis (Ph.D, Geological Sciences & Geological Engineering) -- Queen's University, 2010-01-29 01:34:14.071en
dc.description.abstractThis research takes a multidisciplinary approach to comprehensively investigate the material and mechanical properties as well as pore water chemistry of the Bearpaw shale. This made it possible to characterize how these properties relate to the mechanical strength of this material. The results of this research challenge our ideas of the hydrogeology and of the geological history of the region. Core samples of the Bearpaw Formation and the overlying glacial till were collected from a field site in southern Saskatchewan, Canada. A combination of laboratory tests including multi-staged oedometer tests, constant rate of strain oedometer tests, specialized triaxial swell tests, along with pore water chemistry and finite element modelling were used to meet the following objectives: (1) To investigate the material properties and compression behaviour of the Bearpaw in addition to assessing disturbance due to specimen size; (2) Examine the time dependent behaviour of the Bearpaw and the transferability of time rate models developed for soft soils to stiff soils; (3) Examine the swelling potential and behaviour of the Bearpaw Formation and the influence of boundary conditions on this behaviour, while assessing the applicability of the swell concepts developed for compacted materials to a naturally swelling clay material; and (4) Constrain the depositional age of the till overlying the Bearpaw Shale. Contrary to what is seen in soft soils, smaller sized specimens were found to reduce disturbance, and produce more accurate and consistent results. Creep was found to follow the same laws as it does in soft soils, calling into question whether the use of preconsolidation pressure to predict geological history in stiff clays is appropriate. There was significant variation in the observed swell pressures of samples of the same size and depth. Finally, the glacial till at site was found to belong uniquely to the Battleford Formation and ranges in age from 22,500 to 27,500 years which is much younger (over 100,000 years younger) than previously believed.en
dc.format.extent8203030 bytes
dc.format.mimetypeapplication/pdf
dc.languageenen
dc.language.isoenen
dc.relation.ispartofseriesCanadian thesesen
dc.rightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.en
dc.subjectclayen
dc.subjectconsolidationen
dc.subjectpreconsolidation pressureen
dc.subjectstrain rate effectsen
dc.subjectdisturbanceen
dc.subjectswelling soilsen
dc.subjectdeuteriumen
dc.subjectdiffusionen
dc.titleGEOTECHNICAL CHARACTERIZATION OF THE BEARPAW SHALEen
dc.typethesisen
dc.description.degreePh.Den
dc.contributor.supervisorTake, W. Andyen
dc.contributor.supervisorSiemens, Gregen
dc.contributor.supervisorRemenda, Vickien
dc.contributor.departmentGeological Sciences and Geological Engineeringen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record