A Magnetic Flux Leakage NDE System for CANDU Feeder Pipes
Abstract
This work examines the application of different magnetic flux leakage (MFL) inspection concepts to the non destructive evaluation (NDE) of residual (elastic) stresses in CANDU reactor feeder pipes. The stress sensitivity of three MFL inspection techniques was examined with flat plate samples, with stress-induced magnetic anisotropy (SMA) demonstrating the greatest stress sensitivity. A prototype SMA testing system was developed to apply magnetic NDE to feeders. The system consists of a flux
controller that incorporates feedback from a wire coil and a Hall sensor (FCV2), and
a magnetic anisotropy prototype (MAP) probe. The combination of FCV2 and the MAP probe was shown to provide SMA measurements on feeder pipe samples and predict stresses from SMA measurements with a mean accuracy of ±38MPa.