• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Frontier Sets in Large Terrain Environments with Applications to Decentralized Online Games

    Thumbnail
    View/Open
    Avni_Shachar_201005_MSc.pdf (1.908Mb)
    Date
    2010-05-26
    Author
    Avni, Shachar
    Metadata
    Show full item record
    Abstract
    In current online games, player positions are synchronized by means of continual broadcasts through the server. This solution is expensive, forcing any server to limit its number of clients. With a hybrid networking architecture, player synchronization can be distributed to the clients, bypassing the server bottleneck and decreasing latency as a result. Synchronization in a decentralized fashion is difficult as each player must communicate with every other player. The communication requirements can be reduced by computing and exploiting frontier sets: For a pair of players in an online game, a player's frontier is the region of the game space where the player may move without seeing (and without communicating to) the other player. A pair of frontiers is called a frontier set. This thesis describes the first fast and space-efficient method of computing frontier sets in large terrains.

    Frontier sets are computed by growing regions in a connected set of quads in a hierarchical decomposition of the terrain. The solution involves the precomputation of a potentially visible set (PVS) for each quad in the decomposition, which stores all the quads potentially visible from any point within the current quad. Since the memory needed to store the PVSs for all the quads is quite large, a compression technique is introduced which controls the size of each PVS. A PVS merging algorithm, with both lossless and lossy variations, is also described which permits adding the PVS of a point or quad to the PVS of a growing region. The new algorithm is compared to a simple region growing approach where frontiers are grown along the individual terrain points. Using similar merging techniques, the new algorithm performs better, producing larger frontier sets with faster execution times.
    URI for this record
    http://hdl.handle.net/1974/5688
    Collections
    • Queen's Graduate Theses and Dissertations
    • School of Computing Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV