• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Feature Based Registration of Ultrasound and CT Data of a Scaphoid

    Thumbnail
    View/Open
    2010-05-27_Thesis.pdf (642.1Kb)
    Date
    2010-05-28
    Author
    Koslowski, Brian
    Metadata
    Show full item record
    Abstract
    Computer assisted surgery uses a collection of different techniques including but not limited to: CT-guided, fluoroscopy-guided, and ultrasound-guided imaging which allows medical staff to view bony anatomy of a patient in relation to surgical tools on a computer screen. By providing this visual data to surgeons less invasive surgeries can be performed on a patient's fractured scaphoid. The data required for a surgeon to perform a minimally invasive surgery while looking only at a computer screen, and not directly at a patient's anatomy, will be provided by CT and ultrasound data. We will discuss how ultrasound and CT data can be used together to allow a minimally invasive surgery of the scaphoid to be performed.

    In this thesis we will explore two techniques of registering segmented ultrasound images to CT data; an Iterative Closest Point (ICP) approach, and an Unscented Kalman Filter-based Registration (UKF). We use two different ultrasound segmentation methods; a semi-automatic segmentation, and a Bayesian segmentation technique. The segmented ultrasound data is then registered to a CT volume. The success or failure of the

    registrations is measured by the error calculated in mapping the corresponding land-

    marks to one another and calculating the target registration error. The results show that the Unscented Kalman Filter-based registration using the Bayesian segmentation of ultrasound images has the least registration error, and has the most robustness to error in initial alignment of the two data sets.
    URI for this record
    http://hdl.handle.net/1974/5689
    Collections
    • Queen's Graduate Theses and Dissertations
    • School of Computing Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV