• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reconfigurable CMOS Mixers for Radio-Frequency Applications

    Thumbnail
    View/Open
    Wang_Min_201006_MASc.pdf (4.529Mb)
    Date
    2010-06-21
    Author
    Wang, Min
    Metadata
    Show full item record
    Abstract
    This thesis focuses on the design of radio-frequency (RF) mixers, including a broadband downconverter mixer, an upconverter mixer and a downconverter mixer with high linearity. The basic mixer topology used in this thesis was the Gilbert cell mixer, which is the most popular mixer topology in modern communication systems. In order to accommodate different applications, the broadband mixer and the upconverter mixer were designed to be reconfigurable.

    First, a broadband downconverter mixer with variable conversion gain was designed using 0.13-$\mu m$ CMOS technology. The mixer worked from 2 to 10 GHz. By changing the effective transistor size of the transconductor and the load, the mixer was able to work in three different modes with different conversion gain and power consumption.

    Second, an upconverter mixer with sideband selection was demonstrated in CMOS 0.13-$\mu$m technology. The transmitted sideband could be chosen to be the upper sideband or the lower sideband. The mixer worked at 5 GHz with a 100 MHz IF. The measured voltage conversion gains were 11.2 dB at 4.9 GHz and 12.4 dB at 5.1 GHz. The best sideband rejection was around 30 dB.

    Third, a modified derivative superposition (DS) technique was used to linearize a Gilbert cell mixer. Simulation results predicted an IIP3 improvement of 12.5 dB at 1 GHz. After linearization, the noise figure of the mixer increased by only 0.7 dB and the conversion gain decreased by 0.3 dB. The power consumption of the mixer increased by 0.96 mW.
    URI for this record
    http://hdl.handle.net/1974/5712
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Electrical and Computer Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV