• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparing Naïve Bayes Classifiers with Support Vector Machines for Predicting Protein Subcellular Location Using Text Features

    Thumbnail
    View/Open
    Lam_Yin_P_201006_MSc.pdf (1.214Mb)
    Date
    2010-07-07
    Author
    Lam, Yin
    Metadata
    Show full item record
    Abstract
    Proteins play many roles in the body, and the task of understanding how proteins function is very challenging. Determining a protein’s location within the cell (also referred to as the subcellular location) helps shed light on the function of that protein. Protein subcellular location can be inferred through experimental methods or predicted using computational systems. In particular, we focus on two existing computational systems, namely EpiLoc and HomoLoc, that use features derived from text (abstracts of technical papers), and apply a support vector machine (SVM) classifier to classify proteins into their respective locations. Both EpiLoc and HomoLoc’s prediction accuracy is comparable to that of state-of-the-art protein location prediction systems. However, in addition to accuracy, other factors such as training efficiency must be considered in evaluating the quality of a location prediction system. In this thesis, we replace the SVM classifier in EpiLoc and HomoLoc, by a naïve Bayes classifier and by a novel classifier which we call the Mean Weight Text classifier. The Mean Weight Text classifier and the naïve Bayes classifier are simple to implement and execute efficiently. In addition, naïve Bayes classifiers have been shown effective in the context of protein location prediction and are considered preferable to SVM due to clarity in explaining the process used to derive the results. Evaluating the performance of these classifiers on existing data sets, we find that SVM classifiers have a slightly higher accuracy than naïve Bayes and Mean Weight Text classifiers. This slight advantage is offset by the simplicity and efficiency offered by naïve Bayes and Mean Weight Text classifiers. Moreover, we find that the Mean Weight Text classifier has a slightly higher accuracy than the naïve Bayes classifier.
    URI for this record
    http://hdl.handle.net/1974/5920
    Collections
    • Queen's Graduate Theses and Dissertations
    • School of Computing Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV