• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modelling Pathogen Evolution with Branching Processes

    Thumbnail
    View/Open
    Alexander_Helen_K_201007_MSc.pdf (573.7Kb)
    Date
    2010-07-28
    Author
    Alexander, Helen
    Metadata
    Show full item record
    Abstract
    Pathogen evolution poses a significant challenge to public health, as efforts to control the spread of infectious diseases struggle to keep up with a shifting target. To better understand this adaptive process, we turn to mathematical modelling. Specifically, we use multi-type branching processes to describe a pathogen's stochastic spread among members of a host population or growth within a single host. In each case, there is potential for new pathogen strains with different characteristics to arise through mutation.

    We first develop a specific model to study the emergence of a newly introduced infectious disease, where the pathogen must adapt to its new host or face extinction in this population. In an extension of previous models, we separate the processes of host-to-host contacts and disease transmission, in order to consider each of their contributions in isolation. We also allow for an arbitrary distribution of host contacts and arbitrary mutational pathways/rates among strains. This framework enables us to assess the impact of these various factors on the chance that the process develops into a large-scale epidemic. We obtain some intriguing results when interpreted in a biological context.

    Secondly, motivated by a desire to investigate the time course of pathogen evolutionary processes more closely, we derive some novel theoretical results for multi-type branching processes. Specifically, we obtain equations for: (1) the distribution of waiting time for a particular type to arise; and (2) the distribution of population numbers over time, conditioned on a particular type not having yet appeared. A few numerical examples scratch the surface of potential applications for these results, which we hope to develop further.
    URI for this record
    http://hdl.handle.net/1974/5947
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Mathematics and Statistics Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV