• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Evaluation of the Environmental Protection Provided by Composite Liner Systems

    Thumbnail
    View/Open
    Abdelatty_khaled_M_201009_PhD.pdf (7.688Mb)
    Date
    2010-09-09
    Author
    Abdelatty, Khaled
    Metadata
    Show full item record
    Abstract
    The effect of calcium uptake by hydration and diffusion from an adjacent calcium-rich soil on the performance of a geosynthetic clay liner (GCL) is examined for three cases. In Case 1 the GCL rested directly on a soil with a high calcium (1800 mg/l) concentration in the pore water (called “calcium rich soil” herein). Case 2 involved a GCL resting on 300 mm of soil with a low (200 - 300 mg/l) calcium concentration in the pore water (“foundation soil”) overlying the calcium rich soil. In the third (“control case”), the GCL only rested on the foundation soil. The overburden pressure was 15 kPa. The moisture content of GCL increased to 96%, 86% and 108% in the first 279 days for Cases 1, 2 and 3 respectively. Under isothermal conditions, the GCL moisture content decreased to 80% and 67% for Cases 1 and 2 respectively and increased to 113% for Case 3. After 1100 days, the hydraulic conductivity (k) of the GCL was 4×10-11 m/s for Case 3 but had increased up to about 7×10-11 m/s and 2×10-10 m/s for cases with and without the foundation layer respectively. The results are used to calibrate finite element models. A good correlation was found between k the bulk void ratio (eB) of GCL.

    Leakage and contaminant transport through 10 mm diameter hole in a geomembrane in a composite liner involving a GCL is examined at a stress of 100 kPa for hydraulic heads of 0.3 or 1 m. When permeated with distilled water, the interface transmissivity (θ) was about 2.3 × 10 11 m2/s. After 800 days of permeation with 0.14M NaCl there was only about 3% increase in the flow despite an order of magnitude increase in GCL permeability near the hole because θ decreased from 2.3×10-11 m2/s to 1.1×10-11 m2/s and controlled the leakage despite the increase in GCL permeability. Numerical modeling demonstrated reasonable agreement with the observed transport.
    URI for this record
    http://hdl.handle.net/1974/6031
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Civil Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV