Show simple item record

dc.contributor.authorZhou, Zhihanen
dc.date2010-09-10 11:50:46.618
dc.date.accessioned2010-09-10T20:34:05Z
dc.date.available2010-09-10T20:34:05Z
dc.date.issued2010-09-10T20:34:05Z
dc.identifier.urihttp://hdl.handle.net/1974/6040
dc.descriptionThesis (Ph.D, Chemistry) -- Queen's University, 2010-09-10 11:50:46.618en
dc.description.abstractIn this PhD thesis, the preparation of several types of hybrid materials of block copolymer and magnetic nanoparticles is described. The diversified morphologies of nanoaggregates formed by dispersing poly(glyceryl methacrylate)-block-poly(2-cinnamoyloxyethyl methacrylate)-block-poly(tert-butyl acrylate) tri-block copolymers in block selective solvents will be reported first. The volume occupied by the core block in these nanoaggregates can be swollen by solvent, and the core block can be sculpted. The cores can act potentially as the template to grow magnetic nanoparticles. Thus, a potential method for preparing hybrid magnetic materials of block copolymers and magnetic nanoparticles with different morphologies is developed. A one-pot method to synthesize cobalt nanoparticles covered by a polymer shell is then reported. This is achieved by thermally decomposing dicobalt octacarbonyl in the presence of polymeric multi-dentate ligand poly(ethylene glycol)-block-poly(acrylic acid). Using a similar method, cobalt nanoparticles covered by poly(2-cinnamoyloxyethyl methacryate)-block-poly(acrylic acid) ligand are synthesized. The cobalt nanoparticles fuse into chains for their magnetic dipole-dipole interaction. The chains are then coated with poly(tert-butyl acrylate)-block-poly(2-cinnamoyloxyethyl methacrylate). The coated Co chains are further locked by photo-crosslinking the poly(2-cinnamoyloxyethyl methacrylate) segments. The as-prepared cobalt nano wires have interesting magnetic response and may be used to build complicated magnetic nano devices. Another hybrid magnetic material is prepared via an oil-in-water emulsion method. The oil phase of the emulsion sphere consists of r-Fe2O3 magnetic nanoparticles covered with the poly(2-cinnamoyloxyethyl methacryate)-block-poly(acrylic acid) ligand and a poly(2-cinnamoyloxyethyl methacryate) homopolymer. It was dispersed in water using a mixture of poly(2-cinnamoyloxyethyl methacrylate)-block-poly(succinoylglyceryl methacrylate) and poly(2-cinnamoyloxyethyl methacrylate)-block-poly(glyceryl methacrylate) as the surfactants. The evaporation of the organic solvent left behind solid particles in water. The polymer chains on the surface of the obtained spheres allow the immobilization of biomolecules. Factors affecting the emulsion process are studied systematically. The emulsion spheres are characterized using TEM, AFM, TGA and etc. The emulsion sphere have potential application is immunoassay. The protein binding capacity of the spheres is determined.en
dc.language.isoengen
dc.relation.ispartofseriesCanadian thesesen
dc.rightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.en
dc.subjectHybrid materialen
dc.subjectmagnetic nano particleen
dc.subjectblock copolymeren
dc.subjectself-assemblyen
dc.subjectemulsion sphereen
dc.titleHybrid Materials of Block Copolymers and Magnetic Nanoparticlesen
dc.typethesisen
dc.description.degreePhDen
dc.contributor.supervisorLiu, Guojunen
dc.contributor.departmentChemistryen
dc.degree.grantorQueen's University at Kingstonen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record