• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Geotechnical Applications of LiDAR for Geomechanical Characterization in Drill and Blast Tunnels and Representative 3-Dimensional Discontinuum Modelling

    Thumbnail
    View/Open
    Fekete_Stephanie_201009_MASc.pdf (21.69Mb)
    Date
    2010-09-23
    Author
    Fekete, Stephanie
    Metadata
    Show full item record
    Abstract
    Contractors and tunnelling engineers consistently seek to identify techniques and equipment to improve the efficiency and lower the cost of tunnelling projects. Based on the recent successes of rock slope characterization with laser scanning techniques, the author proposes 3D laser scanning (LiDAR) as a new tool for geotechnical assessment in drill and blast tunnels.

    It has been demonstrated that practical deployment of a phase-based LiDAR system at the face of an active tunnel heading is possible with a simple tripod setup. With data collection requiring only 5 minutes at the tunnel face, it was shown that this technique could be integrated into geotechnical evaluation without interruption of the excavation cycle. Following the successful scanning at two active tunnelling projects and two completed unlined tunnels, the research explored the applications of the data. With detailed geometric data of the heading as it advanced, the author identified applications of interest to the contractor/on-site engineer as well as the geotechnical engineer or geologist responsible for rockmass characterization. Operational applications included the extraction of information about tunnel geometry and installed support, while geomechanical information provided important elements of rockmass characterization. Building on the success of retrieving joint network information, the research investigated the potential for LiDAR-derived structural databases to be the basis for highly-representative 3D discrete element models. These representative models were found to be useful for back-analysis or as predictive tools for future tunnel design.

    The primary implications of the thesis are that a) LiDAR data collection at the face of a drill and blast tunnel operation is practical and potentially has great value, b) data extraction is possible for a wide range of applications, and c) that discontinuum stability analysis becomes a much more powerful tool with the integration of LiDAR data. The cumulative result of the work presented is a proposed workflow for integrating LiDAR into tunneling operations.
    URI for this record
    http://hdl.handle.net/1974/6072
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Geological Sciences and Geological Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV