• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Monitoring Material Modification using Inline Coherent Imaging

    Thumbnail
    View/Open
    Leung_Ben_YC_2010_10_MASc_revised.pdf (14.91Mb)
    Date
    2010-11-03
    Author
    Leung, Ben
    Metadata
    Show full item record
    Abstract
    Laser machining is a commonly used method for materials processing. Focusing laser energy onto a sample can lead to material modifications and achieve feature sizes on the order of micrometres. However, designing a machining platform capable of producing high quality, repeatable, and accurate results is a key challenge because the final outcome can be variable, even when using fixed laser parameters. Therefore, in order to understand and monitor the process, real-time in situ metrology is required.

    In this work, a coherent imaging technique analogous to spectral domain optical coherence tomography (SD-OCT) was applied inline with a machining laser in order to monitor the cut development of various materials for industrial and biomedical applications. Such inline coherent imaging (ICI) provides axial resolution on the order of ones to tens of micrometers as well as temporal resolution on the order of microseconds.

    In stainless steel, the machining front was observed to have very different responses to pulsed lasers operating in different ablation regimes. Applying shorter pulse duration with higher peak intensity led to more deterministic material removal with little relaxation between pulses, while longer pulses revealed periodic melting and refilling behaviour. In addition, improvement of depth sensitivity to nanometre scales was explored by accessing phase information for Doppler processing techniques.

    For poorly absorbing materials, ICI provides the ability to observe structures below the surface. This is a very important characteristic for biomedical applications, such as guiding ablation in biological tissue. By monitoring the ablation of bone tissue in real-time using ICI, the operator was able to terminate exposure from the machining laser 50 μm before perforation into a natural inclusion in the tissue. ICI was able to anticipate the inclusion 176 ± 8 μm below the ablation front with signal intensity 9 ± 2 dB above the noise floor. With added real-time depth control, many applications will benefit whether it is achieving higher precision cuts in industrial materials, or limiting the possibility of damaging organs at risk below the cutting surface in surgical intervention.
    URI for this record
    http://hdl.handle.net/1974/6188
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Physics, Engineering Physics and Astronomy Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV