• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The effects of observed and experimental climate change and permafrost disturbance on tundra vegetation in the western Canadian High Arctic

    Thumbnail
    View/Open
    Bosquet_Lynne_M_201012_MSc.pdf (2.297Mb)
    Date
    2011-01-05
    Author
    Bosquet, Lynne M.
    Metadata
    Show full item record
    Abstract
    The response of vegetation to climate change and permafrost disturbance was studied at the Cape Bounty Arctic Watershed Observatory (CBAWO) on Melville Island, Nunavut. Climate change is expected to alter the terrestrial ecosystem of this area and cause non-linear responses. This study focussed on two predicted outcomes of climate change in the western Canadian High Arctic: the occurrence of a permafrost disturbance termed active layer detachments (ALDs), and increased air temperature and precipitation.

    To study the effects of ALD formation twenty 1 m2 plots were established within two ALDs. One ALD (ALD05) was formed in July 2007 and represented the initial impact of slope failure caused by an exceptionally warm year. The other (ALD04) was formed at least sixty years ago and represented the long-term impact of slope failure. Physical soil measurements and vegetation surveys were completed in both disturbances.

    ALD formation creates depressions on the landscape that increase snow accumulation. Snow accumulation was greater in the more recent ALD than in the older one and this resulted in greater changes to the physical environment. Vegetation was not significantly impacted by disturbance, although phenology was delayed due to snowcover retention.

    To study the effects of increased air temperature and precipitation an International Tundra Experiment (ITEX) site was established at CBAWO in July 2008. Snow fences and open-top chambers (OTC) were erected to increase snow accumulation and air temperature. Physical soil measurements and vegetation surveys were completed through the summer of 2009. Soil temperature and active layer depth were affected by snow and phenology was delayed in plots with snow enhancement. Experimental warming also had some effects on the parameters measured but only in conjunction with snow enhancement. This study found that in the first year of experimentation snow enhancement has a greater effect than increased air temperature.

    These studies represent the beginning of two long-term projects at CBAWO and the results from this study represent baseline data for future research. Continued monitoring will show the evolution of vegetation in the ALDs and the potential long-term effects of temperature and snow manipulation.
    URI for this record
    http://hdl.handle.net/1974/6263
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Geography and Planning Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV