• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Advances in Modeling, Sampling, and Assessing the Anthropogenic Contamination Potential of Fractured Bedrock Aquifers

    Thumbnail
    View/Open
    Kozuskanich_John_C_201102_PhD.pdf (16.61Mb)
    Date
    2011-03-01
    Author
    Kozuskanich, John C.
    Metadata
    Show full item record
    Abstract
    Groundwater is an important resource that is relied on by approximately half of the world’s population for drinking water supply. Source water protection efforts rely on an understanding of flow and contaminant transport processes in aquifers. Bedrock aquifers are considered to be particularly vulnerable to contamination if the overburden cover is thin or inadequate. The objective of this study is to further the understanding of modeling, sampling, and the potential for anthropogenic contamination in fractured bedrock aquifers. Two numerical modeling studies were conducted to examine geochemical groundwater sampling using multi-level piezometers and the role of discretization in a discrete fracture radial transport scenario. Additionally, two field investigations were performed to study the variability of bacterial counts in pumped groundwater samples and the potential for anthropogenic contamination in a bedrock aquifer having variable overburden cover in a semi-urban setting. Results from the numerical modeling showed that choosing sand pack and screen materials similar in hydraulic conductivity to each other and the fractures intersecting the borehole can significantly reduce the required purge volume. Spatiotemporal discretization was found to be a crucial component of the numerical modeling of solute transport and verification of the solution domain using an analytical or semi-analytical solution is needed. Results from the field investigations showed fecal indicator bacterial concentrations typically decrease on the order of one to two orders of magnitude from the onset of pumping. A multi-sample approach that includes collection at early-time during the purging is recommended when sampling fecal indicator bacteria for the purpose of assessing drinking water quality. Surface contaminants in areas with thin or inadequate overburden cover can migrate quickly and deeply into the bedrock aquifer via complex fracture networks that act as preferential pathways. While the presence of fecal indicator bacteria in groundwater samples signifies a possible health risk through human consumption, it was the suite of pharmaceuticals and personal care products that allowed the identification of septic systems and agriculture as the dominant sources of contamination. Land-use planning and source water protection initiatives need to recognize the sensitivity of fractured bedrock aquifers to contamination.
    URI for this record
    http://hdl.handle.net/1974/6329
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Civil Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV