• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Mathematical Discussion of Corotational Finite Element Modeling

    Thumbnail
    View/Open
    Craighead_John_W_201103_MSc.pdf (1.938Mb)
    Date
    2011-03-31
    Author
    Craighead, John Wesley
    Metadata
    Show full item record
    Abstract
    This thesis discusses the mathematics of the Element Independent Corotational (EICR) Method and the more general Unified Small-Strain Corotational Formulation. The former was developed by Rankin, Brogan and Nour-Omid [106]. The latter, created by Felippa and Haugen [49], provides a theoretical frame work for the EICR and similar methods and its own enhanced methods.

    The EICR and similar corotational methods analyse non-linear deformation of a body by its discretization into finite elements, each with an orthogonal frame rotating (and translating) with the element. Such methods are well suited to deformations where non-linearity arises from rigid body deformation but local strains are small (1-4%) and so suited to linear analysis. This thesis focuses on such small-strain, non-linear deformations.

    The key concept in small-strain corotational methods is the separation of deformation into its rigid body and elastic components. The elastic component then can be analyzed linearly. Assuming rigid translation is removed first, this separation can be viewed as a polar decomposition (F = vR) of the deformation gradient (F) into a rigid rotation (R) followed by a small, approximately linear, stretch (v). This stretch usually causes shear as well as pure stretch.

    Using linear algebra, Chapter 3 explains the EICR Method and Unified Small-Strain Corotational Formulation initially without, and then with, the projector operator, reflecting their historical development. Projectors are orthogonal projections which simplify the isolation of elastic deformation and improve element strain invariance to rigid body deformation.

    Turning to Lie theory, Chapter 4 summarizes and applies relevant Lie theory to explore rigid and elastic deformation, finite element methods in general, and the EICR Method in particular. Rigid body deformation from a Lie perspective is well represented in the literature which is summarized. A less developed but emerging area in differential geometry (notably, Marsden/Hughes [82]), elastic deformation is discussed thoroughly followed by various Lie aspects of finite element analysis. Finally, the EICR Method is explored using Lie theory. Given the available research, complexity of the area, and level of this thesis, this exploration is less developed than the earlier linear algebraic discussion, but offers a useful alternative perspective on corotational methods.
    URI for this record
    http://hdl.handle.net/1974/6346
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Mathematics and Statistics Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    Related items

    Showing items related by title, author, creator and subject.

    • Experimental and Computational Methods for Investigating Automotive Door Closure Sounds 

      Garro, Giuseppe
      The focus of this investigation was to examine the acoustic trends present during operation of an automotive door closure at two impact speeds using experimental and computational methods. The impact speeds were 0.851m/s ...
    • Computational Modelling Methodologies and Experimental Verification of the Vibro-Acoustic Behaviour of a Section of Aircraft Fuselage 

      Koukounian, Viken
      An aircraft is an example of sophisticated engineering requiring a high level of understanding, where advanced modelling techniques are used to improve design. This investigation identifies noise and vibration (N&V) as ...
    • A Stepwise Approach to Verification of the Combined Finite-Discrete Element Method for Modelling Instability Around Tunnels in Brittle Rock 

      Markus, Simone
      Numerical modelling of excavations in rock has advanced considerably in recent decades. While continuum numerical models form their basis in methods which can be verified by analytical solutions, discontinuum and hybrid ...

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV