Estimating Potential Photovoltaic Yield with r.sun and the Open Source Geographical Resources Analysis Support System
Abstract
The package r.sun within the open source Geographical Resources Analysis Support System (GRASS) can be used to compute insolation including temporal and spatial variation of albedo and solar photovoltaic yield. A complete algorithm is presented covering the steps of data acquisition and
preprocessing to post simulation whereby candidate lands for incoming solar farms projects are identified. The optimal resolution to acquire reliable solar energy outputs to be integrated into PV
system design software was determined to be 1 square km. A case study using the algorithm developed here was performed on a North American region encompassing fourteen counties in Southeastern Ontario. It was confirmed for the case study that Ontario has a large potential for solar electricity. This region is found to possess over 935,000 acres appropriate for solar farm development, which could provide 90 GW of PV. This is nearly 60% of Ontario’s projected peak electricity demand in 2025. The
algorithm developed and tested in this paper can be generalized to any region in the world in order to foster the most environmentally-responsible development of large-scale solar farms.
URI for this record
http://hdl.handle.net/1974/6432Request an alternative format
If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology CentreThe following license files are associated with this item: