• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Arsenic Mobility and Attenuation in a Natural Wetland at Terra Mine, Northwest Territories, Canada

    Thumbnail
    View/Open
    Sealey_Heather_N_201106_MSc.pdf (6.852Mb)
    Date
    2011-06-27
    Author
    Sealey, Heather
    Metadata
    Show full item record
    Abstract
    Elevated arsenic (As) concentrations in surface water from storing mine tailings in lakes can have a negative impact on local and downstream vegetation and aquatic life. At Terra Mine, an abandoned silver and copper mine in the Northwest Territories, tailings storage in Ho-Hum Lake has resulted in dissolved As concentrations of 50-80 μg/L, exceeding the 5 μg/L maximum guideline for aquatic life. A natural wetland located downstream appears to be attenuating As from surface water. The objectives of this study was to understand the sources of As to the wetland, the effectiveness of the wetland to sequester As, the form and stability of As in the sediments, the processes controlling As mobility, and the effect of seasonal changes in the wetland in the dissolved phase. Arsenic bound to the sediments was determined by analyzing for bulk composition, and As speciation and element association were identified using synchrotron-based bulk XANES and ESEM analysis.

    Arsenic enters the wetland by surface flow from Ho-Hum Lake, subsurface flow through the waste rock airstrip, and by windblown dust. In spring, dissolved As concentrations in surface water increased downstream. In late summer, a decrease in concentration was observed in the upstream portion of the wetland, however As returned to lake concentrations further downstream. Sediment As concentrations increased over the summer. ESEM and bulk XANES indicate that As was associated with (oxy)hydroxides and secondary sulphides. In the spring, when water levels were high from snow melt, (oxy)hydroxides formed and captured As, while sulphide oxidation in the sediments lead to the release of As into surface water. Over the summer, the onset of reducing conditions from microbial activity drove the formation of As-bearing sulphides and dissolution of (oxy)hydroxides.

    While As was accumulating in the sediments at most sites in the wetland over the summer, these results suggest that the wetland was not effectively sequestering dissolved As from the surface water, and that sediment-water cycling of As in the wetland as a result of seasonal redox variations were contributing As in the surface water.
    URI for this record
    http://hdl.handle.net/1974/6577
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Geological Sciences and Geological Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV