• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transition metal catalyzed hydroborations with pinacolborane: new applications and mechanistic investigations

    Thumbnail
    View/Open
    Hleba_Yonek_B_200708_PhD.pdf (851.7Kb)
    Date
    2007-09-12
    Author
    Hleba, Yonek Bryan
    Metadata
    Show full item record
    Abstract
    A methodology for the catalytic asymmetric hydroboration of vinylarenes with pinacolborane has been developed. Use of pinacolborane in hydroboration, especially catalytic asymmetric hydroboration grants direct access to chiral boronate esters, without the cryogenic temperatures required for catalytic hydroboration with catecholborane and the subsequent transesterification with excess pinacol. These chiral boronate esters were then subjected to a homologation/oxidation sequence previously refined in our labs to prepare Naproxen™ in 66% yield and 88% enantiopurity from its corresponding vinyl arene precursor.

    A survey of metal catalysts, solvents and ligands revealed remarkable changes in regioselectivity with changes in metal. Rhodium catalysts in combination with pinacolborane were able to provide regioselectivity for the secondary branched isomer equivalent to those obtained with catecholborane. Iridium catalysts showed a near perfect regioselectivity for the primary linear isomer. With respect to the choice of chiral ligand, complete reversal in the enantiomer obtained was observed with the choice of hydroborating reagent from catecholborane to pinacolborane.

    In order to understand the regioselectivity observed under iridium catalysis, deuterium labeling studies were undertaken. A synthesis of the deuterated hydroboration reagent pinacolborane was first completed. From the results of these studies, in combination with published thermodynamic data, a mechanism for the iridium catalyzed hydroboration of alkenes was proposed.
    URI for this record
    http://hdl.handle.net/1974/664
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Chemistry Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV