• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Type-Safe Computation With Heterogeneous Data

    Thumbnail
    View/Open
    Huang_Freeman_Y_200708_PhD.pdf (894.9Kb)
    Date
    2007-09-14
    Author
    Huang, Freeman Yufei
    Metadata
    Show full item record
    Abstract
    Computation with large-scale heterogeneous data typically requires universal traversal to search for all occurrences of a substructure that matches a possibly complex search pattern, whose context may be different in different places within the data. Both aspects cause difficulty for existing general-purpose programming languages, because these languages are designed for homogeneous data and have problems typing the different substructures in heterogeneous data, and the complex patterns to match with the substructures. Programmers either have to hard-code the structures and search patterns, preventing programs from being reusable and scalable, or

    have to use low-level untyped programming or programming with special-purpose query languages, opening the door to type mismatches that cause a high risk of program correctness and security problems.

    This thesis invents the concept of pattern structures, and proposes a general solution to the above problems - a programming technique using pattern structures. In this solution, well-typed pattern structures are

    defined to represent complex search patterns, and pattern searching over heterogeneous data is programmed with pattern parameters, in a statically-typed language that supports first-class typing of structures and patterns. The resulting programs are statically-typed, highly reusable for different data structures and different patterns, and highly scalable

    in terms of the complexity of data structures and patterns. Adding new kinds of patterns for an application no longer requires changing the language in use or creating new ones, but is only a programming task. The thesis demonstrates the application of this approach to, and its

    advantages in, two important examples of computation with heterogeneous data, i.e., XML data processing and Java bytecode analysis.
    URI for this record
    http://hdl.handle.net/1974/672
    Collections
    • Queen's Graduate Theses and Dissertations
    • School of Computing Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV