• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Emulsion Polymerization Using Switchable Surfactants

    Thumbnail
    View/Open
    Fowler_Candace_I_201109_MSc.pdf (9.524Mb)
    Date
    2011-09-26
    Author
    Fowler, Candace Irene
    Metadata
    Show full item record
    Abstract
    The work presented herein focuses on expanding the use of CO2-triggered switchable surfactants in emulsion polymerization of hydrophobic and hydrophilic

    monomers. Bicarbonate salts of the following compounds were employed as surfactants in the emulsion polymerization of styrene, methyl methacrylate (MMA) and/or butyl methacrylate (BMA): N’-hexadecyl-N,N-dimethylacetamidine (1a), N’-dodecyl N,N-dimethylacetamidine (2a) and N’-(4-decylphenyl)-N,N-dimethylacetamidine (3a). A systematic study of the effects of surfactant and initiator concentrations and solids

    content on the resulting particle size and ζ-potential was carried out, showing that a wide range of particle sizes (40 – 470 nm) can be obtained. It was found that as the basicity of the surfactant decreased, the particle size generated from emulsion polymerization increased. Destabilization of these latexes did not require the addition of salts and was carried out using only non-acidic gases and heat. It was shown that solids content,

    temperature, particle size and surfactant basicity greatly affect the rate of destabilization of latexes. The area occupied by N’-dodecyl-N,N-dimethylacetamidinium acetate on PMMA particles was determined to be 104 Å2. The monomer-D2O partition coefficient of 2a was determined to be 21 for styrene and 2.2 for MMA. The monomer-D2O partition coefficient of the bicarbonate salt of 2a was determined to be 1.2 for styrene and

    0.85 for MMA. An initial assessment of the use of switchable surfactants in the generation of inverse emulsions was carried out. It was determined that butylated polyethyleneimine (BPEI) can successfully stabilize inverse emulsions of cyclohexane and aqueous 2-(dimethylamino)ethyl methacrylate. Upon CO2 introduction, this emulsion separates into two distinct phases.
    URI for this record
    http://hdl.handle.net/1974/6753
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Chemistry Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV