• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Power Converters for Electric Vehicles

    Thumbnail
    View/Open
    Pahlevaninezhad_Majid_201201_PhD.pdf (4.540Mb)
    Date
    2012-01-18
    Author
    Pahlevaninezhad, Majid
    Metadata
    Show full item record
    Abstract
    This thesis presents topologies and control methods to improve the efficiency and dynamic response of Electric Vehicle (EV) power converters. There are three main converters in an EV power conditioning system: a plug-in AC/DC converter, a low-voltage DC/DC converter, and a three-phase inverter. The focus of this thesis is to improve the plug-in AC/DC converter and the low-voltage DC/DC converter.

    A new topology is proposed to improve the efficiency and increase the reliability of the plug-in AC/DC converter. The plug-in AC/DC converter consists of a Power Factor Correction (PFC) stage, which is followed by a high voltage DC/DC converter for galvanic isolation. The proposed approach includes a simple and effective auxiliary circuit for the PFC stage, which guarantees soft-switching for the power switches. Next, a current-driven full-bridge topology is proposed for the high-voltage DC/DC conversion stage, which guarantees soft-switching and eliminates voltage spikes across the output diodes. Also, two control approaches are proposed in order to improve the dynamic response of the AC/DC converter. The first controller is based on nonlinear differential flatness theory, which can be used to improve the transient response of the AC/DC converter. The second controller is based on an optimized stabilizing control-Lyapunov function, which extends the stability margins and improves reliability.

    An optimized variable-frequency phase-shift controller is proposed for the low voltage DC/DC converter, which adaptively controls the amount of reactive current required to maintain soft-switching throughout the whole range of operation and minimizes the switching and conduction losses of the converter.

    Mathematical analysis, simulation, and experimental results are presented to verify the performance of the proposed techniques.
    URI for this record
    http://hdl.handle.net/1974/6966
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Electrical and Computer Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV